Polyester is a category of polymers which contain the ester functional group in their main chain. Although there are many polyesters, the term "polyester" as a specific material most commonly refers to polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, such as in the cutin of plant cuticles, as well as synthetics through step-growth polymerization such as polycarbonate and polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not.
Depending on the chemical structure, polyester can be a thermoplastic or thermoset; however, the most common polyesters are thermoplastics.[1]
Fabrics woven or knitted from polyester thread or yarn are used extensively in apparel and home furnishings, from shirts and pants to jackets and hats, bed sheets, blankets, upholstered furniture and computer mouse mats. Industrial polyester fibers, yarns and ropes are used in tyre reinforcements, fabrics for conveyor belts, safety belts, coated fabrics and plastic reinforcements with high-energy absorption. Polyester fiber is used as cushioning and insulating material in pillows, comforters and upholstery padding. Polyesters are also used to make bottles, films, tarpaulin, canoes, liquid crystal displays, holograms, filters, dielectric film for capacitors, film insulation for wire and insulating tapes. Polyesters are widely used as a finish on high-quality wood products such as guitars, pianos and vehicle/yacht interiors. Thixotropic properties of spray-applicable polyesters make them ideal for use on open-grain timbers, as they can quickly fill wood grain, with a high-build film thickness per coat. Cured polyesters can be sanded and polished to a high-gloss, durable finish.
While synthetic clothing in general is perceived by many as having a less natural feel compared to fabrics woven from natural fibres (such as cotton and wool), polyester fabrics can provide specific advantages over natural fabrics, such as improved wrinkle resistance, durability and high color retention. As a result, polyester fibres are sometimes spun together with natural fibres to produce a cloth with blended properties. Synthetic fibres also can create materials with superior water, wind and environmental resistance compared to plant-derived fibres.
Liquid crystalline polyesters are among the first industrially used liquid crystal polymers. They are used for their mechanical properties and heat-resistance. These traits are also important in their application as an abradable seal in jet engines.
Contents |
Polyesters as thermoplastics may change shape after the application of heat. While combustible at high temperatures, polyesters tend to shrink away from flames and self-extinguish upon ignition. Polyester fibres have high tenacity and E-modulus as well as low water absorption and minimal shrinkage in comparison with other industrial fibres.
Unsaturated polyesters (UPR) are thermosetting resins. They are used as casting materials, fiberglass laminating resins and non-metallic auto-body fillers. Fibreglass-reinforced unsaturated polyesters find wide application in bodies of yachts and as body parts of cars.
According to the composition of their main chain, polyesters can be:
Composition of the main chain | Number of repeating units | Examples of polyesters | Examples of manufacturing methods |
---|---|---|---|
Aliphatic | Homopolymer | Polyglycolide or Polyglycolic acid (PGA) | Polycondensation of glycolic acid |
Polylactic acid (PLA) | Ring-opening polymerization of lactide | ||
Polycaprolactone (PCL) | Ring-opening polymerization of caprolactone | ||
Copolymer | Polyethylene adipate (PEA) | ||
Polyhydroxyalkanoate (PHA) | |||
Semi-aromatic | Copolymer | Polyethylene terephtalate (PET) | Polycondensation of terephthalic acid with ethylene glycol |
Polybutylene terephthalate (PBT) | Polycondensation of terephthalic acid with 1,4-butanediol | ||
Polytrimethylene terephthalate (PTT) | Polycondensation of terephthalic acid with 1,3-propanediol | ||
Polyethylene naphthalate (PEN) | Polycondensation of at least one naphthalene dicarboxylic acid with ethylene glycol | ||
Aromatic | Copolymer | Vectran | Polycondensation of 4-hydroxybenzoic acid and 6-hydroxynaphthalene-2-carboxylic acid |
Increasing the aromatic parts of polyesters increases their glass transition temperature, melting temperature, thermal stability, chemical stability...
Polyesters can also be telechelic oligomers like the polycaprolactone diol (PCL) and the polyethylene adipate diol (PEA). They are then used as prepolymers.
Polyester is a synthetic polymer made of purified terephthalic acid (PTA) or its dimethyl ester dimethyl terephthalate (DMT) and monoethylene glycol (MEG). With 18% market share of all plastic materials produced, it ranges third after polyethylene (33.5%) and polypropylene (19.5%).
The main raw materials are described as follows:
To make a polymer of high molecular weight a catalyst is needed. The most common catalyst is antimony trioxide (or antimony tri acetate):
Antimony trioxide – ATO – CAS-No.: 1309-64-4 Molecular weight: 291.51 Sum formula: Sb2O3
In 2008, about 10,000 tonnes Sb2O3 were used to produce around 49 million tonnes polyethylene terephthalate.
Polyester is described as follows:
Polyethylene Terephthalate CAS-No.: 25038-59-9 Synonym/abbreviations: polyester, PET, PES Sum Formula: H-[C10H8O4]-n=60–120 OH, molelcular unit weight: 192.17
There are several reasons for the importance of Polyester:
In table 1 the estimated world polyester production is shown. Main applications are textile polyester, bottle polyester resin, film polyester mainly for packaging and specialty polyesters for engineering plastics. According to this table, the world's total polyester production might exceed 50 million tons per annum before the year 2010.
Table 1: World polyester production
Product type | 2002 [Million tonnes/year] | 2008 [Million tonnes/year] |
Textile-PET | 20 | 39 |
Resin, bottle/A-PET | 9 | 16 |
Film-PET | 1.2 | 1.5 |
Special polyester | 1 | 2.5 |
Total | 31.2 | 49 |
The raw materials PTA, DMT, and MEG are mainly produced by large chemical companies which are sometimes integrated down to the crude oil refinery where p-Xylene is the base material to produce PTA and liquefied petroleum gas (LPG) is the base material to produce MEG.
After the first stage of polymer production in the melt phase, the product stream divides into two different application areas which are mainly textile applications and packaging applications. In figure 2 the main applications of textile and packaging polyester are listed.
Table 2: Textile and packaging polyester application list
Textile | Packaging |
Staple fiber (PSF) | Bottles for CSD, Water, Beer, Juice, Detergents |
Filaments POY, DTY, FDY | A-PET Film |
Technical yarn and tire cord | Thermoforming |
Non-woven and spunbond | BO-PET Biaxial oriented Film |
Mono-filament | Strapping |
Abbreviations: PSF = Polyester Staple Fiber; POY = Partially Oriented Yarn; DTY = Draw Textured Yarn; FDY = Fully Drawn Yarn; CSD = Carbonated Soft Drink; A-PET = Amorphous Polyester Film; BO-PET = Biaxial Oriented Polyester Film;
A comparable small market segment (much less than 1 million tonnes/year) of polyester is used to produce engineering plastics and masterbatch.
In order to produce the polyester melt with a high efficiency, high-output processing steps like staple fiber (50–300 tonnes/day per spinning line) or POY /FDY (up to 600 tonnes/day split into about 10 spinning machines) are meanwhile more and more horizontal, integrated, direct processes. This means the polymer melt is directly converted into the textile fibers or filaments without the common step of pelletizing. We are talking about full horizontal integration when polyester is produced at one site starting from crude oil or distillation products in the chain oil → benzene → PX → PTA → PET melt → fiber/filament or bottle-grade resin. Such integrated processes are meanwhile established in more or less interrupted processes at one production site. Eastman Chemicals introduced at first the idea to close the chain from PX to PET resin with their so-called INTEGREX process. The capacity of such horizontal, integrated productions sites is >1000 tonnes/day and can easily reach 2500 tonnes/day.
Besides the above mentioned large processing units to produce staple fiber or yarns, there are ten thousands of small and very small processing plants, so that one can estimate that polyester is processed and recycled in more than 10 000 plants around the globe. This is without counting all the companies involved in the supply industry, beginning with engineering and processing machines and ending with special additives, stabilizers and colors. This is a gigantic industry complex and it is still growing by 4–8% per annum, depending on the world region. Useful information about the polyester industry can be found under [2] where a “Who is Producing What in the Polyester Industry” is gradually being developed.
Synthesis of polyesters is generally achieved by a polycondensation reaction. See "condensation reactions in polymer chemistry". The general equation for the reaction of a diol with a diacid is :
In this classical method, an alcohol and a carboxylic acid react to form a carboxylic ester. To assemble a polymer, the water formed by the reaction must be continually removed by azeotrope distillation.
The acid begins as an acid chloride, and thus the polycondensation proceeds with emission of hydrochloric acid (HCl) instead of water. This method can be carried out in solution or as an enamel.
Aliphatic polyesters can be assembled from lactones under very mild conditions, catalyzed anionically, cationically or metallorganically. A number of catalytic methods for the copolymerization of epoxides with cyclic anhydrides have also recently been shown to provide a wide array of functionalized polyesters, both saturated and unsaturated.
Unsaturated polyesters are thermosetting resins. They are generally copolymers prepared by polymerizing one or more diol with saturated and unsaturated dicarboxylic acids (maleic acid, fumaric acid...) or their anhydrides. The double bond of unsaturated polyesters reacts with a vinyl monomer mainly the styrene, resulting in a 3-D cross-linked structure. This structure acts as a thermoset. The cross-linking is initiated through an exothermic reaction involving an organic peroxide, such as methyl ethyl ketone peroxide or benzoyl peroxide.
|
|